
QSP provider API guidelines

Author: The Hyve

Document version history

Version Version Date Initiator of change Description of change

1 April 20th 2018 -

2 May 29th 2018 Joris Borgdorff A provider MUST provide fully functional example
requests or an example client on how to call the
API. (was: SHOULD)

3 June 5th 2018 Faustina Hwang,
Jo Goossens

Added guidelines for non-technical description of
the AP, and use cases for the API.

4 July 24th 2018 Faustina Hwang,
Joris Borgdorff

- References to projects (Qualify, EIT Food) are
removed
- Added performance guidelines

5 October 4th 2018 Joris Borgdorff - Added maximum response size in API guidelines

The Quisper Service Platform (QSP) is intended as a uniform platform that provides access
to APIs from different providers of nutritional data, knowledge rules or personalized data. To
allow uniform access to those APIs by clients, these providers should follow a set of
guidelines.

The ideal solution to offering a set of webservices, is that the input and outputs of the distinct
webservices are harmonized. This harmonization consists of structural (syntactic) and
content (semantic) harmonization efforts. Semantic harmonization will not be pursued.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

Structural guidelines
Since the guidelines were formulated, the technologies that are generally used for these
kinds of APIs have been updated. The HAL/JSON format has not seen a large uptake, and
in some cases turned out to be verbose to implement. On the other hand, the Swagger and
OpenAPI specifications have become more important. They allow an API provider to
accurately describe what type of data an API accepts and what type of data it will returns. In
addition, clients can automatically be generated from a Swagger or OpenAPI definition.

The guidelines are the following:

● Use a RESTful API (see for example ​https://restfulapi.net​):

1

https://restfulapi.net/

● distinguish between HTTP methods (GET, POST, PUT, DELETE),
● use HTTP status codes for meaningful feedback, and

● Uniform REST URL naming (see for example ​https://restfulapi.net/resource-naming/​)
● use URLs representing the content of the webservices instead of the provider

names, as it will be more useful for the customers
● Make use of a hierarchical URL rather than relying only on request contents. This

clarifies the intention of a URL and simplifies the API documentation process.
● Only use lowercase letters, numbers, and if needed hyphens.
● Use nouns.
● Use plurals for collections.
● Generally avoid acronyms.

● Use JSON in requests and responses where possible. Use content negotiation headers
for other data formats.

● Request and response body sizes may not exceed 10 MB (10485760 bytes).

Documentation guidelines
For users to be able to implement a client to a provider, they need enough information on
how the service works.

● A provider MUST describe the purpose of the API in a non-technical summary, a
non-technical description (targeted at healthcare providers, societal organisations,
and professionals providing personalised nutrition advice who may want to use the
service) and a technical description. The (non-)technical descriptions SHOULD
describe possible uses or use cases of the API. A provider SHOULD provide an
image or logo pertaining the API.

● A provider MUST describe the API with Swagger version 2.0 or OpenAPI version 3.0
(see ​https://swagger.io/specification/​)

● The specification MUST document all API calls, parameters and possible
responses. It SHOULD contain descriptions and possible values.

● The specification SHOULD document the structure of the requests and
responses.

● A provider MUST provide fully functional example requests or an example client on
how to call the API.

● A provider SHOULD provide documents or URLs of publicly available documents
describing the possible contents of a request and response. For example, a
reference to an ontology or thesaurus.

Security guidelines
Access to provider API’s should be secure but not too hard to use for clients. QSP can
connect only to providers that have the following properties:

1. The provider MUST host its API on an HTTPS connection.
2. The provider MUST use a valid SSL certificate for the HTTPS connection.
3. The provider SHOULD enable CORS by sending the header

Access-Control-Allow-Origin: * with all responses.

2

https://restfulapi.net/resource-naming/
https://swagger.io/specification/

Item 1 ensures that all data and headers are sent over an encrypted channel and cannot be
read or modified. This is especially crucial for the QSP token, which should not be shared
with any other party than QSP and the provider. Item 2 prevents some types of
man-in-the-middle attacks, where an attacker poses as the provider to intercept all data.

A provider should accept a connection from QSP on the following conditions:

3. The provider SHOULD verify the token that QSP sends to indicate that the request
originates from QSP.

4. The provider MAY inspect the HTTP ‘Host’ header to verify that the request
originated from a QSP server.

5. The provider MAY inspect headers sent by QSP to find what user and/or client made
the request.

6. The provider SHOULD NOT require additional client authentication.

In item 3, if the provider API is not public and open, the token sent by QSP allows a service
to accept connections only from QSP. Item 4 consists of an additional optional verification to
the same effect. The client application or QSP may send additional headers to indicate what
client and user connected to the service, allowing the service to differentiate responses to
different users and/or clients. Item 6 ensures that clients will not have to implement multiple
security protocols to make use of a provider, making connecting to a provider more difficult.
QSP should take care of the authentication so that providers do not have to. Possibly, client
authentication that is part of the regular web service outside QSP can be foregone when the
provider verifies that the request originates from QSP.

Performance guidelines
To give a suitable performance to clients, services should provide have a certain
performance. In particular, the service should have the following characteristics.

1. Handle at least 20 requests per second.
2. Handle at least 10 simultaneous requests.
3. For every request, start a response within 29 seconds.

If the service is structured as a REST API, QSP can cache service responses. This helps
achieving this performance by reducing the number of calls made to the actual service.
Response caching comes at an additional cost, determined in
https://aws.amazon.com/api-gateway/pricing/​. It depends on the structure of the REST API
how useful caching is.

3

https://aws.amazon.com/api-gateway/pricing/

